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Physics H7A Fall 1998 (Strovink)

SOLUTION TO FINAL EXAMINATION

Problem 1.

a.
We consider this head-on collision in the center
of mass. The center of mass velocity is

V ∗ = V
M

M + m
≈ V

Using this approximation, in the C.M. the fly
approaches the locomotive with speed V . Since
the collision is elastic, it bounces back with the
same speed. Transforming back to the lab, the
fly has velocity

v ≈ V + V = 2V

b.
In each collision, the momentum 2mV that is
gained by the fly is lost by the locomotive:

∆P = M∆V = −2mV

∆V

V
= −2

m

M

In a time interval ∆t, the volume swept out by
the front of the train is AV ∆t; this volume con-
tains NAV ∆t flies. So, for NAV ∆t collisions,
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M
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∫
dt

1
V

− 1
V0
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M
t

V (t) =
1

2NA m
M t + 1

V0

V (t) =
V0

1 + 2NAV0
m
M t

where V0 is the velocity at t = 0.

Problem 2.
At the instant that the probe barely grazes the
planet, it will have radius R and velocity vf

directed tangentially to the planet. Angular
momentum conservation requires

mv0b = mvfR

vf = v0
b

R

Substituting for vf in the equation for energy
conservation, we obtain
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Problem 3.

a.

mRω2 = mg

ω =
√

g

R

b.

2ωv = aC = g
v

vC
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c.

FC = −2m(ω × v)

ω is north, and −v is east; �north× �east is down.
This is the direction in which the ball misses.

aC = 2ωv = 2v
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(We ignore the centrifugal force on the ball, be-
cause it is the same on the colony as on earth,
and the pitcher already compensates for it.) As a
sanity check, if D = 20 m and v = 40 m/sec (ap-
propriate to baseball), and R = 1000 m, we ob-
tain d ≈ 1 m. Indeed d is much smaller than D.
Nevertheless, from the standpoint of the pitcher,
the Coriolis force has a big effect on his control.

Problem 4.
The equation of motion for x(t) is

mẍ = −k(x− xs) = −mω2
0(x− xs)

ẍ = −ω2
0x + ω2

0mA sinωt

ẍ + ω2
0x = kA sinωt

a.

try xp(t) = B sinωt

(−ω2 + ω2
0)B sinωt = kA sinωt

B =
kA

ω2
0 − ω2

xp(t) =
kA sinωt

ω2
0 − ω2

b.
Because an infinite force from the spring would

be required otherwise, ẋ0(0) = 0 as well as
x0(0) = 0. The general solution to the homoge-
neous equation of motion (A = 0) is

xh(t) = C cosω0t + D sinω0t

The general solution to the full equation is ob-
tained by adding xh to xp. Applying initial
conditions,

x0(t) =
kA sinωt

ω2
0 − ω2

+ C cosω0t + D sinω0t

x0(0) = 0 ⇒ C = 0

ẋ0(0) = 0 ⇒ 0 =
ωkA

ω2
0 − ω2

+ ω0D

D = − ω

ω0

kA

ω2
0 − ω2

x0(t) = kA
ω0 sinωt− ω sinω0t

ω0(ω2
0 − ω2)

Problem 5.

a.

ξ(x = 0, t) = ξ(x = L, t) = 0

b.

ξ(x, t) = sin kx�(
ξ0 exp (−iωt)

)
sin kL = 0

kL = nπ, n = 1, 2, . . .
ω ≡ ck

ωs =
πc

L

c.

ξ(x, t) = ξ(x + L, t)

d.
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ξ(x, t) = �(
ξ0 exp (i(kx− ωt))

)
exp(ikx) = exp(ik(x + L)

1 = exp(ikL)
kL = 2nπ, n = 1, 2, . . .
ω ≡ ck

ωt =
2πc
L

ωt = 2ωs

Problem 6.

a.
Per unit mass of fluid, the force f is

f = −r̂
GM

r2

We seek a function Φ(r) such that

−∇Φ = f

or equivalently, using spherical symmetry,

Φ = −
∫

frdr

Clearly

Φ(r) = −GM

r

satisfies either of these conditions.

b.
Since the flow is steady, we can use Bernoulli’s
equation (either along a streamline at constant
(θ, φ), or, since the flow is irrotational, anywhere
outside the black hole):

1
2
ρv2 + p + ρΦ = constant

Only the first and third terms are not con-
stant, so they must have the same r dependence.
Therefore v2 and Φ have the same r dependence.
So

v ∝ r−1/2

c.
In steady flow there can be no buildup of mass
density ρ. Therefore the mass flow

ρv (kg/m2sec) × 4πr2 (m2)

through a spherical surface of radius r must be
independent of r. So, using the result of part
(a.),

ρv ∝ r−2

ρ ∝ r−3/2

More formally, but equally acceptably, one can
reach the same conclusion by applying the con-
tinuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0

and using the fact that for steady flow the first
term vanishes.


